中國 涤光 第12卷 第1期

KCl:Na 晶体中的激光工作色心 F_B(II)

尤 路 李 平 李胜华 方书淦 (上海交通大学应用物理系) 魏守柱 何绍其 王魁华 (四川自贡化工研究所)

提要:采用附加着色法,在 KCl:Na 晶体中获得密度为 $10^{16} \sim 10^{18}$ 厘米⁻³ 的 F 心。利用 F 带光进行转型,得到了 F_B(II)激光工作色心,其 77 K 荧光发射带在 2.1~2.8 微米,峰值位置为 2.5 微米。

Laser active color center F_B(II) in KCl:Na crystals

You Lu, Li Ping, Li Shenghua, Fang Shugan (Department of Applied Physics, Shanghai Jiaotong University)

Wei Shouzu, He Shaoqi, Wang Kuihua

(Zigong Institute of Chemical Engineering, Sichuan)

Abstract: By using additive coloration method, the F-center concentration of $10^{16} \sim 10^{18} \text{ cm}^{-3}$ in KCl: Na crystals is obtained. $F_B(II)$ center is formed by exposing the additively colored crystal to F-band excitation, and its emission band at 77 K covers the range of 2.1 to 2.8 μ m, and the peak is at 2.5 μ m.

1974 年贝尔实验室的 Mollenauer 等首 次研制出了近红外连续可调谐的色心激光 器,此后由于色心激光器本身具有在红外区 连续可调谐、低阈值、窄线宽等一系列特殊优 点以及它在分子光谱、光通讯、频率标准等 方面的重要应用,因此色心晶体和色心激光 器的研究工作受到了很大的重视。最近已出 现了色心晶体保用期为一年的商品激光器, 这一情况表明这方面的研究工作又有了重要 的进展。

本文主要介绍我们从 KOI: Na 晶体中获 得激光工作色心 $F_B(II)$ 的工作。其中包括 在高温下扩 K 获得较高密度的纯 F 心,测量 和计算 F 心密度,在低温下进行 $F \rightarrow F_B(II)$

收稿日期: 1984年2月17日。

· 15 ·

转型,转型后的晶体在室温(RT)和77K (LNT)低温的吸收光谱以及F_B(II)的LNT 荧光激发和发射光谱的测量等。

二、原 理

1. KCl:Na:F_B(II)激光工作心

KC1:Na 晶体中一些色心的结构见图 1。 从图 2 可见, F 心是一个四能级系统,但 F 心发射振子强度很小(*f*~0.01),并且很 易被热漂白,因此它不适宜做激光工作心。

 $F_B(II)$ 心同样也是四能级系统,但在结构上 x 和 z 方向出现二个杂质正离子 Na⁺, 对称性降为 C_{2v} ,导致 p 态能级出现分裂。由 于 p_x 、 p_z 态受 Na⁺离子的扰动相等并且大于

图 1 KCl:Na 晶体中一些色心的结构简图

图 3 KOI:Na 晶体中 F_B(11)心的离子 组态和相应的能级图 左:正常组态;右:弛豫组态

 p_{y} 态所受到的扰动,因此 p_{a} 、 p_{z} 态仍然简并, 而且其能量低于 p_{y} 态的能量。当电子从基态向 p态跃迁时,在吸收谱上则反映为 $F_{B_{1}}(II)$ 和 $F_{B_{2}}(II)$ 两个吸收带,见图 3a。 $F_{B}(II)$ 心的弛豫激发态(RES)结构类似于 氢分子离子 H_{2}^{1} ,发射振子强度较大,且其电 子运动与晶格振动有较强的耦合,发射光谱 带很宽,因此很适宜作调频激光工作心。

2. F_B(II)心的形成

(1) F 心的获得。采用附加着色法将 KCl:Na 晶体在适当高温的 K 蒸气中加热 时, K⁺ 附到晶体表面上并以一定的扩散流 密度向晶体内部扩散。晶体中存在着大量的 Schottky 空位,部分进入晶体的 K⁺,将占据 正离子空位, 而负离子空位捕获一个电子形 成 F 心。另一方面,晶体正常格位上的 Cl⁻ 在高温下可获得足够的能量脱离束缚并迁移 到表面与过剩的 K⁺ 形成新晶格层, 留下的 负离子空位与电子结合也形成 F 心。

晶体中 F 心密度 n_F 与其吸收光谱曲线 所包围的面积成正比,其值可用 Smakula 公 式

 $n_F f = 1.29 \times 10^{17} \frac{n}{(n^2+2)^2} \alpha_{\max} W$

求得。其中f为F心吸收振子强度, n是晶 体对应于吸收波长的折射率, α_{max} 为峰值吸 收系数, W 为吸收带半宽度。对于 KCl:Na 晶体, 上式简化为

 $n_F f = 1.08 \times 10^{16} \alpha_{\max} W$ f $\oplus 0.81^{160}$

(2) F心转型为F_B(II)心。经附加着色 后的 KOI:Na 晶体在 F 带光照射下,部分 F 心被电离成 F⁺ 和 e, e 与另一 F心(F 心带有 微弱正电)结合时形成 F⁻ 心。 这个 过程 可 表示为:

 $2F + h\nu_F \longrightarrow F^+ + F^-$

在 KCl:Na 晶体中, F⁺ 的可动温度在 -50° C 以上。 当 F⁺ 心迁移到两个在 $\langle 110 \rangle$ 方向相 互靠近的 Na⁺ 边上并捕获一个电子时,便形 成了 F_B(II) 心。由于 F_A、F_B(I)等心的形成 也是由 F⁺ 迁移造成的,因此在 F_B(II)形成 的同时总是伴随出现 F_A、F_B(I)等心。这三 种心的吸收带与 F 心吸收带是相互交迭,但 F_B(II) 心的 Stokes 位移比 F_A、F_B(I)等心大 得多,所以 F_B(II) 心的存在很容易从荧光谱 中得到鉴别。

三、实 验

晶体附加着色装置见图 4。实验中先把 KCl:Na 晶体和适量的 K 放入热管。用真空 泵把热管抽成真空,充入适量 的 惰 性 气体 Ar,然后将热管放入已加热至预定温度的加 热炉内,待温度达到所需的扩散温度时自动 保温,经预定的扩散时间后,取出热管并进行 速冷处理。实验中温度和时间由所需的 F 心密度、晶体大小等因素决定。一组具体的 实验数据为:KCl:Na 晶 体厚度 l=0.5 厘 米,扩散温度 T=620°C,时间 t=40 分,Ar 气压 60 托。

经附加着色的晶体切片后用分光光度计 测出其 RT 吸收谱,见图 5。从图可得峰值 吸收系数* $\alpha_{max} = 57.3$ 厘米⁻¹,半宽度W =0.448 电子伏。由 Smakula 公式(取f = 0.81) 可求得 F 心密度:

 $n_{\rm F} = 3.5 \times 10^{17} \, \text{mm}^{-3}$ 。

图 6 为经过速冷法处理及自然冷却的晶体吸收谱。

色心转型装置见图 7。转型过程中,晶体置于恒温器的样品室内,其温度由杜瓦瓶中的干冰-酒精混合液控制(控温范围: -78°C 至 RT),用热电偶和数字电压表测量和显示温度。由汞灯提供的 F 带光使 F 心转型成为 $F_B(II)$ 心。一组具体的实验数据为: KC1:Na 晶体转型前 F 心密度 $n_F=3.5\times$ 10¹⁷ 厘米⁻³, Na 含量 1200 ppm, Li 含量 <2 ppm;转型光源为 200 瓦汞灯,温度 T=-35°C,时间 t=50 分。

^{*} 分光光度计测出的光密度值 (O. D.) 与吸收系数 α 的关系为: (O. D.) = $\alpha \cdot l \cdot \lg e$, 其中 l 是晶体厚度, e 是自 然数。

转型后晶体的 RT 吸收光谱、LNT 吸收 光谱、LNT 荧光激发和发射光谱见 图 8、图 9、图 10 和图 11。

图 11 KCl:Na 晶体 F_B(II)心 LNT 荧光谱 (激发波长 580 毫微米)

四、讨 论

1. 从图 6 可见, 速冷法能使已形成的 F 心冻结并有效地抑制 F_2 (吸收峰在 810 毫微 米左右)等 F 聚心。这对于 $F \rightarrow F_B(II)$ 转型 是有利的。

2. 图 8 表明,转型后晶体吸收带加宽, 峰值下降,即在转型过程中 F 心减少,其他 色心出现。在 LNT 低温下,晶体吸收带呈 现三个吸收峰,峰值位置分别为 535、580、 635 毫微米,这说明 F \rightarrow F_B(II)转型过程中 同时产生了 F_A、F_B(I)、F_C等心。535 毫微米 峰主要由 F_{B2}(II)(516 毫微米)、F_{A2}(530 毫 微米)、F_{B2}(I)(514 毫微米)、F_{C2}(530 毫微 米)和 F(540 毫微米)等吸收叠加而成;580 毫微米峰由 F_{B1}(II)(580 毫微米)和 F_{A1}(585 毫微米)等吸收叠加而成;635 毫微米峰则由 F_{B2}(I)(636 毫微米)和 F_{C1}(620 毫微米)等吸 收叠加而成。 3. 图 10 中荧光的激发光谱峰值位置在 580 毫微米左右,与 F_B(II)吸收谱基本一致。 但图 10 未能明显地显示出 F_{B1}(II)和 F_{B2}(II) 的双峰结构,我们认为是由于荧光谱仪的激 发光单色仪狭缝较宽所致。

 4. 已获得的 F_B(II)心 LNT 荧光发射 光谱带(580 毫微米激发),其范围 从 2.1 微 米至 2.8 微米,峰值位置为 2.5 微米,与文献 [1,2]对比基本一致。

我校黄木贞老师为本文 LNT 吸收光谱 做了许多工作,在此表示衷心感谢。

参考文献

- L. F. Mollenauer et al.; J. Appl. Phys., 1975,46, 3109.
- [2] L. Litfin et al.; Appl. Phys. Lett., 1977, 31, 381.
- [3] K-P. Koch et al.; Opt. Lett., 1979, 4, 387.
- [4] Nishimaki et al.; J. Phys. Soc. Jpn., 1972, 33, 424.
- [5] I. Schneider: Phys. Rev., 1969, 177, 1324.
- [6] C. Z. van Doorn; Philips Res. Rept. Suppl., 1962, 4.

(上接第21页)

放电电压为 70 千伏, 激光谐振腔由 R=2 米的 3080 Å 全反射镜和石英平板组成。

为了观察其它气体对 X 光预电离的影响,我们对不同 Xe 浓度下延迟时间 对激光输出的影响作了类似的实验,其结果由 图 4 给出。此时保持 HCl=10 托,而总气压为 4 个大气压。

作者对本所姜阅清等同志提供延迟触发 器表示感谢。

参考文献

- [1] J. I. Levatter, S. C. Lin; J. Appl. Phys., 1980, 51, 40.
- [2] 郑承恩等;《电子学报》1983, 11, 110.